Top quark in theory

Hadron Collider Physics workshop Galena, IL, May 2008

Eric Laenen

Top: Star of the Hadron Colliders

- Most expensive, most glamorous
- Interacts with everybody, especially with those who matter
- Promises major, tell-all revelations real soon now
- Will be center of attention while..
- ... until a new star comes along..

Top: Star of the Hadron Colliders

- Most expensive, most glamorous
- Interacts with everybody, especially with those who matter
- Promises major, tell-all revelations real soon now
- Will be center of attention while..
- ... until a new star comes along..

Top is special

- It has lots of quantum numbers, couples to pretty much everything..
- ...through chiral, vector, scalar structures (SM)
- Large mass
 - strong coupling to EWSB mechanism
 - good for pQCD, no hadronization
 - spin information preserved due to rapid decay
- ▶ Top is trouble maker for SM (quadratic divergences...), enabler for MSSM, Little Higgs...
- Top Mission: check its behavior, very carefully.
- Tevatron made the first precious few, now many more. LHC a top factory

q q w b

LHC:T-factory

Top Pair Decay Channels

all-hadronic

tau+jets

muon+jets

electron+jets

electron+jets

all tau+jets

muon+jets

cs

Pairs: 8 MEvents/year (x 10)

• after 10 fb⁻¹: 70K lepton + jet events

- Single: 2 MEvents/year (x 10)
- after 10 fb⁻¹: 5K events

Top will immediately be used for calibration

Top and Little Higgs

Little Higgs models: Higgs is a pseudo-Goldstone boson, therefore light

- Symmetries forbid one-loop Higgs mass term: solves little hierarchy problem
- ...which was caused, anyway, mostly by top loop corrections
- Little Higgs models cancel (top) quadratic divergences with similar particles of same spin (vectorlike top T e.g.)

Han, Logan, Wang

Good number of models (gauge groups, T-parity), can be unraveled

- measuring couplings in the top, T sector, and m_T (cross section 0.01-100 fb)
- test vector character of T

Top and SUSY

- ▶ Keeps MSSM alive via (top, stop) corrections on lightest Higgs mass
- Radiative EW symmetry breaking
- Many LHC SUSY signals involve top, or top mimics them
- Heavy Higgses may decay to top, can determine their CP properties

Top and extra dimensions

New particles, Kaluza Klein modes

- Gluon KK modes show up as resonances in reaction gg →tt
- Angular distributions of top decay leptons can distinguish scenarios

Top mass

 $\Gamma_t \cong 1.28 \text{ GeV}$

now: $172.6 \pm 1.4 \text{ GeV}$ (Tevatron)

▶ Measure via reconstruction of final state, or via cross section

▶ Relate m_W, m_t, m_H to constrain SM, MSSM

Top mass

- LHC: accuracy of I GeV possible → 6 MeV accuracy of m_W at fixed m_H
- Experiments reconstruct approximately the pole mass from decay products
- Better mass definition perhaps through $t \to b(\to J/\psi) + IV$ at LHC Karchilava, otherwise wait for (I)LC Fleming, Hoang, Mantry, Stewart; Beneke, Signer; Hoang
- \blacktriangleright Some measurements use theoretical cross section. Use distribution in M_{tt} ?

A bit of threshold resummation

All order sum of large logs

1.
$$\sum_{n} \alpha_s^n \ln^{2n}(s - 4m^2) \quad [\sigma(s)]$$

2.
$$\sum_{n} \alpha_{s}^{n} \ln^{2n}(s - 4(m^{2} + p_{T}^{2})) \quad [d\sigma(s)/dp_{T}]$$

3.
$$\sum_{n} \alpha_s^n \ln^{2n} (s - 4(m^2 + p_T^2) \cosh y) \quad [d^2 \sigma(s) / dp_T dy]$$

- "Threshold" depends on observable.
 - But note: for total cross section, one could use all three.
- For ease, first take moments of (s-4m²) etc $\sum_{n=1}^{\infty} \alpha_s^n \ln^{2n} N$
- ▶ Then resum. Then, undo moments

A bit of threshold resummation

- ✓ Logs L from soft/collinear gluons, can be summed to all orders
- ✓ Many ways to derive exponential form
- ✓ Algebraic proof: "eikonal" perturbation theory is exponent of "web" diagrams
- $\hat{O} = 1 + \alpha_s(L^2 + L + 1) + \alpha_s^2(L^4 + L^3 + L^2 + L + 1) + \dots$ $= \exp\left(\underbrace{Lg_1(\alpha_s L)}_{LL} + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right) \underbrace{C(\alpha_s)}_{\text{constants}}$ + suppressed terms
- ✓ For Higgs/Drell-Yan inclusive cross section:

$$\hat{\sigma}_i(N) = C(\alpha_s) \times \exp\left[\int_0^1 dz \frac{z^{N-1} - 1}{1 - z} \left\{ 2 \int_{\mu_F^2}^{(1-z)^2 Q^2} \frac{d\mu^2}{\mu^2} A_i(\alpha_s(\mu^2)) + D_i(\alpha_s(1-z)Q^2) \right\} \right]$$

- ✓ A: Cusp anomalous dimension. D: known to 3rd order
- ✓ Similar for top, but D is a matrix in color space

Sterman; Catani, Trentadue, Gatheral, Frenkel, Taylor, Grazzini, de Florian, Forte, Ridolfi, Vogelsang, Kidonakis, EL, Magnea, Moch, Vogt, Vogt, Eynck, Ravindran, Becher, Neubert, Ji, Idilbi,...

Updated theoretical top cross section

- ✓ NLL resummed, with exact NLO
- ✓ Tevatron top near threshold, LHC not so much
- ✓ Since 2003 better PDF's, new results in resummation
- ✓ CTEQ6.5, MRST2006-NNLO
- √ Time to update the inclusive top cross section, and its errors

Moch, Uwer

- √ Vary μ_R, μ_F
- √ Linear error combinations
- ✓ Tevatron: 7% LHC: 5% (NNLO-approx)

Cacciari, Frixione, Mangano, Nason, Ridolfi

- ✓ Vary μ_R , μ_F independently, conservatively
- √ No error combinations
- ✓ At LHC: scale uncertainty >> PDF uncertainty
- ✓ Tevatron: 10% LHC: 10 % (NLO-NLL)

Nadolsky, Lai, Cao, Huston, Pumplin, Stump, Tung, Yuan

- \checkmark Vary μ_R= μ_F
- ✓ CTEQ6.6
- ✓ Use cross section as gluon probe, standard candle

Approximate NNLO cross section

Resummed cross section

$$\frac{\hat{\sigma}_{ij,I}^{N}(m_{t}^{2},\mu_{f}^{2},\mu_{r}^{2})}{\hat{\sigma}_{ij,I}^{(0),N}(m_{t}^{2},\mu_{f}^{2},\mu_{r}^{2})} = g_{ij,I}^{0}(m_{t}^{2},\mu_{f}^{2},\mu_{r}^{2}) \cdot \exp\left(G_{ij,I}^{N+1}(m_{t}^{2},\mu_{f}^{2},\mu_{r}^{2})\right)$$

$$G^N_{qar{q}/gg,I} \;\; = \;\; G^N_{ ext{DY/Higgs}} - \delta_{I,8} G^N_{Qar{Q}} \,,$$

Remarkable:

Known to 3 loops

Known to 2 loops !!

Aybat, Dixon, Sterman

Result:
$$\alpha_s^2 \sum_{n=0}^{4} c_n \ln^n \beta$$
 + Coulomb, $\beta = \sqrt{1 - \frac{4m^2}{s}}$

$$\beta = \sqrt{1 - \frac{4m^2}{s}}$$

Other thresholds?

Exact NNLO top cross section?

Czakon, Mitov, Moch

- Full exact NNLO $2 \rightarrow 2$ does not yet exsit massless partons
- Part of real corrections (I virtual + I emission) known (Dittmaier, Uwer, Weinzierl)
- ▶ Virtual corrections now computed for m_t² << s,t,u</p>
 - log(m_t) from Factorization + 2-loop massless results (Mitov, Moch)
 - Direct calculation via Mellin-Barnes (Czakon) methods
- Now also large m_t vintual results

$$\frac{1}{(A+B)^{\nu}} = \frac{1}{\Gamma(\nu)} \frac{1}{2\pi i} \int_{C} dz \frac{A^{z}}{B^{\nu+z}} \Gamma(-z) \Gamma(\nu+z)$$

Charge asymmetry

aka forward-backward asymmetry

CDF: 24 ± 13 ± 4 %

D0: 12 ± 8 ± 1 %

- Rate difference of top vs. anti-top at fixed angle (or rapidity)
- ▶ At LO from Electroweak, or BSM mechanisms
- Shows up in QCD first at $O(\alpha^3s)$ through (a) interference Born-Virtual, or (b) radiative. Nason, Dawson, Ellis Beenakker, Kuijf, van Neerven, Meng, Schuler, Smith Rodrigo, Kuhn

Interference of C-odd and C-even amplitudes. Proportional to SU(3) dabc

NLL threshold resummation [Almeida, Sterman, Vogelsang] for charge asymmetry from that for $\frac{d\sigma^{t\bar{t}}}{dM_{t\bar{t}}\,d\cos\theta} \ \ \, \frac{Kidonakis,\, EL,\, Moch,\, Vogt}{Kidonakis,\, Sterman}$

Sizeable enhancement at large Mtt, but overall moderate, and more accurate

- Sensitive to many SM extensions decaying to top pairs
- Bottom-up approach, don't assume full model
- Use MC@NLO, Madgraph
- Study of (pseudo) scalar, vector, spin-2 resonances. Gives masses, widths, parity, spin. Interference matters.

$t \xrightarrow{W^+} v, \overline{q}'$

Top decay: spin

$$\frac{d\ln\Gamma_f}{d\cos\chi_f} = \frac{1}{2}(1 + \alpha_f\cos\chi_f)$$

- ► Top self-analizes its spin: 100% correlation ($\alpha_f = 1$) of t-spin with l⁺-direction
- QCD corrections to α_f very small
- Worthy of verification (e.g. charged Higgs decay would lower α_f)
- Powerful probe of spin quantum numbers of top, and any process that produced it (single top, resonance,..)

Higher order top production

Much recent progress:

- Associated production at NLO (3+ particles in final state at LO)
- Monte Carlo descriptions, both parton-shower and matrix-element based
- Top spin included

tt + Higgs to NLO

Beenakker, Dittmaier, Krämer, Plumper, Spira, Zerwas; Dawson, Jackson, Orr, Reina, Wackeroth

- Helps measure top yukawa coupling
- Early studies: excellent for discovering light Higgs (→ bb)
- Recent studies [ATLAS,CMS]: backgrounds probably too hard for Higgs discovery
- ▶ NLO 2 \rightarrow 3 process with different masses feasible, both for phase space slicing and subtraction methods
- ▶ Spin-off: bb → Higgs (for MSSM) (Harlander, Kilgore; Maltoni, Sullivan, Willenbrock)

tt + jet to NLO

- ▶ Helps unravel top pair production, sensitive to new physics
- Important background to many BSM signals
- Possibly measure top charge asymmetry in pp
- Theoretical testing ground: 2 →3 full QCD at NLO, with mass, and complicated color structure
- Many advanced techniques used (novel reductions, dipole method, Berends-Giele recursion). Two fully independent calculations
- ▶ Computer algebra crucial

Differential distributions (almost) ready

tt + spin correlations at NLO

Bernreuther, Brandenburg, Fücker, Si, Uwer Mahlon, Parke

- At LHC, tops in pair production are produced essentially unpolarized
- But they do have clear mutual spin correlation

$$\frac{d\sigma}{d\cos\theta_a\cos\theta_b} = \frac{\sigma}{4}(1 + B_1\cos\theta_a + B_2\cos\theta_b - C\cos\theta_a\cos\theta_b)$$

- C depends on quantization axis, highest in helicity basis in zero momentum frame
 - $C_{hel} = 0.326$ $(C_{beam} = -0.07)$

Top and Monte Carlo

Tree-level, high multiplicity matrix elements, matched to parton showers

- ► Alpgen: tt $+ \le 6$ jets (uses ALPHA algorithm, MLM matching, with spin)
- MadEvent: tt + ≤ 3 jets (uses helicity amps, various matchings)
- ► CompHep: $tt + \le I$ jets (squared matrix elements, with spin)

Next-leading order (includes virtual corrections), matched to parton showers

- MC@NLO: tt + ≤ I jet (spin included)
- POWHEG: tt + ≤ I jet

$$\frac{d\sigma}{dO} = \int_0^1 dx \left[I_{MC}(O, x_M(x)) \frac{\alpha(R(x) - BQ(x))}{x} + I_{MC}(O, 1) \frac{B + \alpha V + \alpha B(Q(x) - 1)}{x} \right]$$

Interface to parton shower

- MC@NLO outputs events
- Events have weight +1 or -1 (< 15%)</p>
- ▶ Showers from hard processes of NLO cross section, $2 \rightarrow 2$ and $2 \rightarrow 3$
- Inclusive rate is $\sigma(NLO)$
- Expand shower, and subtract to avoid double counting

MC@NLO and tt

- First process in MC@NLO with final state colored partons, multiple color flows
- Interpolates well between large hard matrix element behavior, and softer physics dominated by parton showers

Top MC comparisons

With MC descriptions of top physics very central, it is important to understand differences

- POWHEG (Nason; Oleari, Frixione no negative weights, different showering) vs MC@NLO
- MC@NLO vs.ALPGEN for tt+jet

Single top at NLO

Important process for LHC

- Allows measurement of V_{tb} per channel
- Easier check of chiral structure of Wtb vertex than tt
- Infer the b-density
- Sensitive to FCNC's (t-channel), or W' resonances (s-channel)

Harris, EL, Phaf, Sullivan, Weinzierl; Cao, Schwienhorst, Yuan; Zhu; Campbell, Ellis, Tramontano

σ(NLO)	s-channel [pb]	t-channel [pb]	Wt-channel [pb]
Tevatron	0.90	2.00	0.00
LHC	10.20	245.00	60.00

V_{tb}

- In SM constrained to be 0.9998 by unitarity
- Less is more → extra fermions
- E.g. if extra vector-like quark, or 4th generation, $V_{tb} > 0.8 0.9$, depending on assumptions

 Alwall et al [Louvain]

Single top at NLO, cont'd

Differential distributions at NLO

D0: 3.4 σ evidence for single top CDF: $\sigma = 2.2 \pm 0.7$ pb, [3.7 σ evidence]

- Calculated with about all phase space slicing and subtraction mechanisms known to Man
- Top spin, in NWA, included using NLO density matrix

Bkgd: W+ 2j, tt, mistags

Single top in MC@NLO

Frixione, EL, Motylinski, Webber

Adds MC@NLO benefits to this process, but also

- required extension of MC@NLO to final state jets
- simplified subtraction method

Spin correlations for single top in MC@NLO

Frixione, EL, Motylinski, Webber

- Top is produced polarized by EW interaction
- Angular dependence discriminates channels: here t-channel quantization axes

Serious interference with pair production (10 times bigger)

- Clean solution: compute WWbb (Kauer, Zeppenfeld), don't separate
- Previous: cut on invariant Wb invariant mass (Belyaev, Boos, Dudko), subtraction of resonant cross section (Tait)
- MCFM (Campbell, Tramontano) Veto if p_T of 2nd hardest b (or B) is too hard; suppress channels through scale choice
- What can one do in event generation?
- Can one actually define this process?

Can we define W+t as a process?

We also include p_T veto. Two approaches

- Remove resonant diagrams (DR) (- not gauge invariant)
- Constructed a gauge invariant, local counterterm.

 Diagram subtraction (DS)
- DS DR is measure of interference

$$d\sigma^{(2)} + \sum_{\alpha\beta} \int \frac{dx_1 dx_2}{2x_1 x_2 S} \mathcal{L}_{\alpha\beta} \left(\hat{\mathcal{S}}_{\alpha\beta} + \mathcal{I}_{\alpha\beta} + \mathcal{D}_{\alpha\beta} - \tilde{\mathcal{D}}_{\alpha\beta} \right) d\phi_3$$

Compare

- Interference effects quite small
- Gauge variant result always very close to gauge invariant

Yes we can!

Momentum reshufling

 $\tilde{\mathcal{D}}_{gg} = \frac{BW(M_{\bar{b}W})}{BW(M_{\star})} |A_{gg}^{t\bar{t}}|_{\text{reshuffled}}^{2}$

Conclusions

- Top physics: report on its every move
- Theory tools to do so already good, but keep remarkable pace of innovation
- Characteristics of production, decay very revealing
 - Top tells us its spin: angular distributions important
 - Precision of predictions important, and improving
- ▶ Top will remain "hot" for years to come..